Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Application of alignment-free bioinformatics methods to identify an oomycete protein with structural and functional similarity to the bacterial AvrE effector protein.

Identifieur interne : 000849 ( Main/Exploration ); précédent : 000848; suivant : 000850

Application of alignment-free bioinformatics methods to identify an oomycete protein with structural and functional similarity to the bacterial AvrE effector protein.

Auteurs : Devdutta Deb [États-Unis] ; David Mackey [États-Unis] ; Stephen O. Opiyo [États-Unis] ; John M. Mcdowell [États-Unis]

Source :

RBID : pubmed:29641586

Descripteurs français

English descriptors

Abstract

Diverse plant pathogens export effector proteins to reprogram host cells. One of the most challenging goals in the molecular plant-microbe field is to functionally characterize the complex repertoires of effectors secreted by these pathogens. For bacterial pathogens, the predominant class of effectors is delivered to host cells by Type III secretion. For oomycetes, the predominant class of effectors is defined by a signal peptide that mediates secretion from the oomycete and a conserved RxLR motif. Downy mildew pathogens and Phytophthora species maintain hundreds of candidate RxLR effector genes in their genomes. Although no primary sequence similarity is evident between bacterial Type III effectors (T3Es) and oomycete RXLR effectors, some bacterial and oomycete effectors have convergently evolved to target the same host proteins. Such effectors might have evolved domains that are functionally similar but sequence-unrelated. We reasoned that alignment-free bioinformatics approaches could be useful to identify structural similarities between bacterial and oomycete effectors. To test this approach, we used partial least squares regression, alignment-free bioinformatics methods to identify effector proteins from the genome of the oomycete Hyaloperonospora arabidopsidis that are similar to the well-studied AvrE1 effector from Pseudomonas syringae. This approach identified five RxLR proteins with putative structural similarity to AvrE1. We focused on one, HaRxL23, because it is an experimentally validated effector and it is conserved between distantly related oomycetes. Several experiments indicate that HaRxL23 is functionally similar to AvrE1, including the ability to partially rescue an AvrE1 loss-of-function mutant. This study provides an example of how an alignment-free bioinformatics approach can identify functionally similar effector proteins in the absence of primary sequence similarity. This approach could be useful to identify effectors that have convergently evolved regardless of whether the shared host target is known.

DOI: 10.1371/journal.pone.0195559
PubMed: 29641586
PubMed Central: PMC5895030


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Application of alignment-free bioinformatics methods to identify an oomycete protein with structural and functional similarity to the bacterial AvrE effector protein.</title>
<author>
<name sortKey="Deb, Devdutta" sort="Deb, Devdutta" uniqKey="Deb D" first="Devdutta" last="Deb">Devdutta Deb</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mackey, David" sort="Mackey, David" uniqKey="Mackey D" first="David" last="Mackey">David Mackey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Horticulture and Crop Science and Molecular Genetics, Ohio State University, Columbus, Ohio, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Horticulture and Crop Science and Molecular Genetics, Ohio State University, Columbus, Ohio</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Opiyo, Stephen O" sort="Opiyo, Stephen O" uniqKey="Opiyo S" first="Stephen O" last="Opiyo">Stephen O. Opiyo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Molecular and Cellular Imaging Center-Columbus, Ohio Agricultural Research and Development Center, Ohio State University, Columbus, Ohio, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Molecular and Cellular Imaging Center-Columbus, Ohio Agricultural Research and Development Center, Ohio State University, Columbus, Ohio</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mcdowell, John M" sort="Mcdowell, John M" uniqKey="Mcdowell J" first="John M" last="Mcdowell">John M. Mcdowell</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29641586</idno>
<idno type="pmid">29641586</idno>
<idno type="doi">10.1371/journal.pone.0195559</idno>
<idno type="pmc">PMC5895030</idno>
<idno type="wicri:Area/Main/Corpus">000775</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000775</idno>
<idno type="wicri:Area/Main/Curation">000775</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000775</idno>
<idno type="wicri:Area/Main/Exploration">000775</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Application of alignment-free bioinformatics methods to identify an oomycete protein with structural and functional similarity to the bacterial AvrE effector protein.</title>
<author>
<name sortKey="Deb, Devdutta" sort="Deb, Devdutta" uniqKey="Deb D" first="Devdutta" last="Deb">Devdutta Deb</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mackey, David" sort="Mackey, David" uniqKey="Mackey D" first="David" last="Mackey">David Mackey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Horticulture and Crop Science and Molecular Genetics, Ohio State University, Columbus, Ohio, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Horticulture and Crop Science and Molecular Genetics, Ohio State University, Columbus, Ohio</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Opiyo, Stephen O" sort="Opiyo, Stephen O" uniqKey="Opiyo S" first="Stephen O" last="Opiyo">Stephen O. Opiyo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Molecular and Cellular Imaging Center-Columbus, Ohio Agricultural Research and Development Center, Ohio State University, Columbus, Ohio, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Molecular and Cellular Imaging Center-Columbus, Ohio Agricultural Research and Development Center, Ohio State University, Columbus, Ohio</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mcdowell, John M" sort="Mcdowell, John M" uniqKey="Mcdowell J" first="John M" last="Mcdowell">John M. Mcdowell</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, Virginia</wicri:regionArea>
<placeName>
<region type="state">Virginie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (cytology)</term>
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Cell Death (MeSH)</term>
<term>Computational Biology (MeSH)</term>
<term>Data Mining (MeSH)</term>
<term>Lycopersicon esculentum (microbiology)</term>
<term>Models, Molecular (MeSH)</term>
<term>Oomycetes (metabolism)</term>
<term>Oomycetes (physiology)</term>
<term>Phenotype (MeSH)</term>
<term>Protein Conformation, alpha-Helical (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (cytologie)</term>
<term>Biologie informatique (MeSH)</term>
<term>Fouille de données (MeSH)</term>
<term>Lycopersicon esculentum (microbiologie)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Mort cellulaire (MeSH)</term>
<term>Oomycetes (métabolisme)</term>
<term>Oomycetes (physiologie)</term>
<term>Phénotype (MeSH)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Structure en hélice alpha (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Lycopersicon esculentum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Lycopersicon esculentum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Oomycetes</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Cell Death</term>
<term>Computational Biology</term>
<term>Data Mining</term>
<term>Models, Molecular</term>
<term>Phenotype</term>
<term>Protein Conformation, alpha-Helical</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biologie informatique</term>
<term>Fouille de données</term>
<term>Modèles moléculaires</term>
<term>Mort cellulaire</term>
<term>Phénotype</term>
<term>Structure en hélice alpha</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Diverse plant pathogens export effector proteins to reprogram host cells. One of the most challenging goals in the molecular plant-microbe field is to functionally characterize the complex repertoires of effectors secreted by these pathogens. For bacterial pathogens, the predominant class of effectors is delivered to host cells by Type III secretion. For oomycetes, the predominant class of effectors is defined by a signal peptide that mediates secretion from the oomycete and a conserved RxLR motif. Downy mildew pathogens and Phytophthora species maintain hundreds of candidate RxLR effector genes in their genomes. Although no primary sequence similarity is evident between bacterial Type III effectors (T3Es) and oomycete RXLR effectors, some bacterial and oomycete effectors have convergently evolved to target the same host proteins. Such effectors might have evolved domains that are functionally similar but sequence-unrelated. We reasoned that alignment-free bioinformatics approaches could be useful to identify structural similarities between bacterial and oomycete effectors. To test this approach, we used partial least squares regression, alignment-free bioinformatics methods to identify effector proteins from the genome of the oomycete Hyaloperonospora arabidopsidis that are similar to the well-studied AvrE1 effector from Pseudomonas syringae. This approach identified five RxLR proteins with putative structural similarity to AvrE1. We focused on one, HaRxL23, because it is an experimentally validated effector and it is conserved between distantly related oomycetes. Several experiments indicate that HaRxL23 is functionally similar to AvrE1, including the ability to partially rescue an AvrE1 loss-of-function mutant. This study provides an example of how an alignment-free bioinformatics approach can identify functionally similar effector proteins in the absence of primary sequence similarity. This approach could be useful to identify effectors that have convergently evolved regardless of whether the shared host target is known.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29641586</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>07</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Application of alignment-free bioinformatics methods to identify an oomycete protein with structural and functional similarity to the bacterial AvrE effector protein.</ArticleTitle>
<Pagination>
<MedlinePgn>e0195559</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0195559</ELocationID>
<Abstract>
<AbstractText>Diverse plant pathogens export effector proteins to reprogram host cells. One of the most challenging goals in the molecular plant-microbe field is to functionally characterize the complex repertoires of effectors secreted by these pathogens. For bacterial pathogens, the predominant class of effectors is delivered to host cells by Type III secretion. For oomycetes, the predominant class of effectors is defined by a signal peptide that mediates secretion from the oomycete and a conserved RxLR motif. Downy mildew pathogens and Phytophthora species maintain hundreds of candidate RxLR effector genes in their genomes. Although no primary sequence similarity is evident between bacterial Type III effectors (T3Es) and oomycete RXLR effectors, some bacterial and oomycete effectors have convergently evolved to target the same host proteins. Such effectors might have evolved domains that are functionally similar but sequence-unrelated. We reasoned that alignment-free bioinformatics approaches could be useful to identify structural similarities between bacterial and oomycete effectors. To test this approach, we used partial least squares regression, alignment-free bioinformatics methods to identify effector proteins from the genome of the oomycete Hyaloperonospora arabidopsidis that are similar to the well-studied AvrE1 effector from Pseudomonas syringae. This approach identified five RxLR proteins with putative structural similarity to AvrE1. We focused on one, HaRxL23, because it is an experimentally validated effector and it is conserved between distantly related oomycetes. Several experiments indicate that HaRxL23 is functionally similar to AvrE1, including the ability to partially rescue an AvrE1 loss-of-function mutant. This study provides an example of how an alignment-free bioinformatics approach can identify functionally similar effector proteins in the absence of primary sequence similarity. This approach could be useful to identify effectors that have convergently evolved regardless of whether the shared host target is known.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Deb</LastName>
<ForeName>Devdutta</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mackey</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Departments of Horticulture and Crop Science and Molecular Genetics, Ohio State University, Columbus, Ohio, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Opiyo</LastName>
<ForeName>Stephen O</ForeName>
<Initials>SO</Initials>
<AffiliationInfo>
<Affiliation>Molecular and Cellular Imaging Center-Columbus, Ohio Agricultural Research and Development Center, Ohio State University, Columbus, Ohio, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McDowell</LastName>
<ForeName>John M</ForeName>
<Initials>JM</Initials>
<Identifier Source="ORCID">0000-0002-9070-4874</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>04</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016923" MajorTopicYN="N">Cell Death</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="Y">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057225" MajorTopicYN="N">Data Mining</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018551" MajorTopicYN="N">Lycopersicon esculentum</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009868" MajorTopicYN="N">Oomycetes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072756" MajorTopicYN="N">Protein Conformation, alpha-Helical</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>12</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>03</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29641586</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0195559</ArticleId>
<ArticleId IdType="pii">PONE-D-17-45304</ArticleId>
<ArticleId IdType="pmc">PMC5895030</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Feb;24(2):183-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20955078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jul 29;333(6042):596-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21798943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2018 Mar;31(3):374-385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29106332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 1;313(5791):1261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2014 Feb 25;12(2):e1001801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24586116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2013 May;342(1):54-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23421848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2016 Aug 4;54:419-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27359369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2007;45:399-436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17506648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Jan 23;9:40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18215316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2015;66:487-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25494461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):10119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22675118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Sep;169(1):793-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26206852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Jan;18(1):147-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11836223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Aug;10(4):349-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17625953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Feb;19(2):99-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16529372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 Sep;9(5):633-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19018993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Nov;27(11):1186-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25083909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Nov 23;539(7630):524-529</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27882964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Aug;13(4):427-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20447858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Nov;200(3):808-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23879865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2011 Jul;9(7):e1001094</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21750662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2014 Sep 10;16(3):364-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25211078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4856-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10781092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1540-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Dec;196(4):1197-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23078195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Dec 1;24(23):2780-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18818215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9927-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15210989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Aug;20(8):2009-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Jul;13(7):1675-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12840044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Nov 25;468(7323):527-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21107422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 May;26(5):528-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23547905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Nov;24(11):4763-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23204405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):3269-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14981249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1995 Jan-Feb;8(1):49-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7772803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2015 May;16(4):413-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25178392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2009 Jul;10(4):547-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19523107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2010 Apr;5(4):725-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20360767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1549-1551</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 May 18;12 (5):e1005609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27191168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2012;50:295-318</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22920560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Jun;26(6):611-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23550528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Jul 23;142(2):284-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20655469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2015 Oct;28(10):1063-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26125490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Dec;23(12):1531-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20653410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Dec;19(12):4077-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18165328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1654-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19171904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Apr 22;33(7):2302-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15849316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1986 Nov;168(2):512-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3023280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2007 Feb;6(2):846-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17269741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2013;51:473-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23725467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W545-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20457744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 Apr;180(8):2244-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9555912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Jun 30;5:312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25071795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Oct;19(10):1092-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17022173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1997 Dec;26(5):1057-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9426142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Dec 06;8(12):e82032</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24324742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Jan;12(1):7-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25549265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2009;77 Suppl 9:100-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19768687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 Apr 24;54(2):263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24766890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2015;53:541-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26047564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Aug;15(4):469-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22465133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2018 Jan;31(1):22-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29023190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Feb 03;8:99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28217133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Jun;22(6):703-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19445595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(7):R73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20626842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2016 Feb;29:49-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26599514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Aug;15(4):483-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22483402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1998 Dec;23(12):454-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9868361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 Oct 13;12:503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21995639</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
<li>Virginie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Virginie">
<name sortKey="Deb, Devdutta" sort="Deb, Devdutta" uniqKey="Deb D" first="Devdutta" last="Deb">Devdutta Deb</name>
</region>
<name sortKey="Mackey, David" sort="Mackey, David" uniqKey="Mackey D" first="David" last="Mackey">David Mackey</name>
<name sortKey="Mcdowell, John M" sort="Mcdowell, John M" uniqKey="Mcdowell J" first="John M" last="Mcdowell">John M. Mcdowell</name>
<name sortKey="Opiyo, Stephen O" sort="Opiyo, Stephen O" uniqKey="Opiyo S" first="Stephen O" last="Opiyo">Stephen O. Opiyo</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000849 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000849 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29641586
   |texte=   Application of alignment-free bioinformatics methods to identify an oomycete protein with structural and functional similarity to the bacterial AvrE effector protein.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29641586" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024